Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Viruses ; 13(11)2021 11 19.
Article in English | MEDLINE | ID: covidwho-1538549

ABSTRACT

A growing number of studies indicate that mRNAs and long ncRNAs can affect protein populations by assembling dynamic ribonucleoprotein (RNP) granules. These phase-separated molecular 'sponges', stabilized by quinary (transient and weak) interactions, control proteins involved in numerous biological functions. Retroviruses such as HIV-1 form by self-assembly when their genomic RNA (gRNA) traps Gag and GagPol polyprotein precursors. Infectivity requires extracellular budding of the particle followed by maturation, an ordered processing of ∼2400 Gag and ∼120 GagPol by the viral protease (PR). This leads to a condensed gRNA-NCp7 nucleocapsid and a CAp24-self-assembled capsid surrounding the RNP. The choreography by which all of these components dynamically interact during virus maturation is one of the missing milestones to fully depict the HIV life cycle. Here, we describe how HIV-1 has evolved a dynamic RNP granule with successive weak-strong-moderate quinary NC-gRNA networks during the sequential processing of the GagNC domain. We also reveal two palindromic RNA-binding triads on NC, KxxFxxQ and QxxFxxK, that provide quinary NC-gRNA interactions. Consequently, the nucleocapsid complex appears properly aggregated for capsid reassembly and reverse transcription, mandatory processes for viral infectivity. We show that PR is sequestered within this RNP and drives its maturation/condensation within minutes, this process being most effective at the end of budding. We anticipate such findings will stimulate further investigations of quinary interactions and emergent mechanisms in crowded environments throughout the wide and growing array of RNP granules.


Subject(s)
HIV Infections/virology , HIV-1 , Nucleocapsid Proteins/immunology , Viral Proteases/immunology , HIV-1/immunology , HIV-1/physiology , Humans , Virus Assembly
2.
Biol Aujourdhui ; 215(1-2): 25-43, 2021.
Article in French | MEDLINE | ID: covidwho-1358361

ABSTRACT

Targeted protein degradation (TPD), discovered twenty years ago through the PROTAC technology, is rapidly developing thanks to the implication of many scientists from industry and academia. PROTAC chimeras are heterobifunctional molecules able to link simultaneously a protein to be degraded and an E3 ubiquitin ligase. This allows the protein ubiquitination and its degradation by 26S proteasome. PROTACs have evolved from small peptide molecules to small non-peptide and orally available molecules. It was shown that PROTACs are capable to degrade proteins considered as "undruggable" i.e. devoid of well-defined pockets and deep grooves possibly occupied by small molecules. Among these "hard to drug" proteins, several can be degraded by PROTACs: scaffold proteins, BAF complex, transcription factors, Ras family proteins. Two PROTACs are clinically tested for breast (ARV471) and prostate (ARV110) cancers. The protein degradation by proteasome is also induced by other types of molecules: molecular glues, hydrophobic tagging (HyT), HaloPROTACs and homo-PROTACs. Other cellular constituents are eligible to induced degradation: RNA-PROTACs for RNA binding proteins and RIBOTACs for degradation of RNA itself (SARS-CoV-2 RNA). TPD has recently moved beyond the proteasome with LYTACs (lysosome targeting chimeras) and MADTACs (macroautophagy degradation targeting chimeras). Several techniques such as screening platforms together with mathematical modeling and computational design are now used to improve the discovery of new efficient PROTACs.


TITLE: Dégradation induite des protéines par des molécules PROTAC et stratégies apparentées : développements à visée thérapeutique. ABSTRACT: Alors que, pour la plupart, les médicaments actuels sont de petites molécules inhibant l'action d'une protéine en bloquant un site d'interaction, la dégradation ciblée des protéines, découverte il y a une vingtaine d'années via les petites molécules PROTAC, connaît aujourd'hui un très grand développement, aussi bien au niveau universitaire qu'industriel. Cette dégradation ciblée permet de contrôler la concentration intracellulaire d'une protéine spécifique comme peuvent le faire les techniques basées sur les acides nucléiques (oligonucléotides antisens, ARNsi, CRISPR-Cas9). Les molécules PROTAC sont des chimères hétéro-bifonctionnelles capables de lier simultanément une protéine spécifique devant être dégradée et une E3 ubiquitine ligase. Les PROTAC sont donc capables de provoquer l'ubiquitinylation de la protéine ciblée et sa dégradation par le protéasome 26S. De nature peptidique, puis non peptidique, les PROTAC sont maintenant administrables par voie orale. Ce détournement du système ubiquitine protéasome permet aux molécules PROTAC d'élargir considérablement le champ des applications thérapeutiques puisque l'élimination de protéines dépourvues de poches ou de crevasses bien définies, dites difficiles à cibler, devient possible. Cette technologie versatile a conduit à la dégradation d'une grande variété de protéines comme des facteurs de transcription, des sérine/thréonine/tyrosine kinases, des protéines de structure, des protéines cytosoliques, des lecteurs épigénétiques. Certaines ligases telles que VHL, MDM2, cereblon et IAP sont couramment utilisées pour être recrutées par les PROTAC. Actuellement, le nombre de ligases pouvant être utilisées ainsi que la nature des protéines dégradées sont en constante augmentation. Deux PROTAC sont en étude clinique pour les cancers du sein (ARV471) et de la prostate (ARV110). La dégradation spécifique d'une protéine par le protéasome peut aussi être induite par d'autres types de molécules synthétiques : colles moléculaires, marqueurs hydrophobes, HaloPROTAC, homo-PROTAC. D'autres constituants cellulaires sont aussi éligibles à une dégradation induite : ARN-PROTAC pour les protéines se liant à l'ARN et RIBOTAC pour la dégradation de l'ARN lui-même comme celui du SARS-CoV-2. Des dégradations induites en dehors du protéasome sont aussi connues : LYTAC, pour des chimères détournant la dégradation de protéines extracellulaires vers les lysosomes, et MADTAC, pour des chimères détournant la dégradation par macroautophagie. Plusieurs techniques, en particulier des plates-formes de criblage, la modélisation mathématique et la conception computationnelle sont utilisées pour le développement de nouveaux PROTAC efficaces.


Subject(s)
COVID-19 Drug Treatment , Drug Design , Molecular Targeted Therapy/methods , Proteolysis , Recombinant Fusion Proteins/pharmacology , SARS-CoV-2/drug effects , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Autophagy , Catalysis , Humans , Lysosomes/metabolism , Neoplasm Proteins/antagonists & inhibitors , Neoplasms/drug therapy , Proteasome Endopeptidase Complex/metabolism , Protein Conformation , Protein Processing, Post-Translational/drug effects , Protein Stability , Proteolysis/drug effects , RNA/drug effects , RNA-Binding Proteins/antagonists & inhibitors , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/pharmacokinetics , Structure-Activity Relationship , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL